A New Dynamic Random Fuzzy DEA Model to Predict Performance of Decision Making Units
Authors
Abstract:
Data envelopment analysis (DEA) is a methodology for measuring the relative efficiency of decision making units (DMUs) which ‎consume the same types of inputs and producing the same types of outputs. Believing that future planning and predicting the ‎efficiency are very important for DMUs, this paper first presents a new dynamic random fuzzy DEA model (DRF-DEA) with ‎common weights (using multi objective DEA approach) to predict the efficiency of DMUs under mean chance constraints and ‎expected values of the objective functions. In the initial proposed†â€DRF-DEA model, the inputs and outputs are assumed to be ‎characterized by random triangular fuzzy variables with normal distribution, in which data are changing sequentially. Under this ‎assumption, the solution process is very complex. So we then convert the initial proposed DRF-DEA model to its equivalent multi-‎objective stochastic programming, in which the constraints contain the standard normal distribution functions, and the objective ‎functions are the expected values of functions of normal random variables. In order to improve in computational time, we then ‎convert the equivalent multi-objective stochastic model to one objective stochastic model with using fuzzy multiple objectives ‎programming approach. To solve it, we design a new hybrid algorithm by integrating Monte Carlo (MC) simulation and Genetic ‎Algorithm (GA). Since no benchmark is available in the literature, one practical example will be presented. The computational results ‎show that our hybrid algorithm outperforms the hybrid GA algorithm which was proposed by Qin and Liu (2010) in terms of ‎runtime and solution quality. ‎
similar resources
Designing a new multi-objective fuzzy stochastic DEA model in a dynamic environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)
This paper presents a new multi-objective fuzzy stochastic data envelopment analysis model (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA model, the outputs and inputs are characterized by random triangular fuzzy variables with normal distribution, in which ...
full textRanking Decision Making Units in Fuzzy-DEA Using Entropy
Abstract Data Envelopment Analysis (DEA) can be regarded as a useful management tool to the assessment evaluation of decision making units (DMUs) using multiple inputs to produce multiple outputs. In some cases, to evaluate the efficiency having imprecise inputs and outputs such as fuzzy or interval data the efficiency of DMUs won’t be exact as well. Most researches have been conducted were bas...
full textIdeal and anti-ideal decision making units: A fuzzy DEA approach
In this paper, by introducing two virtual decision-making units (DMUs) called ideal DMU (IDMU) and anti-ideal DMU (ADMU) with fuzzy inputs-outputs, the efficiency evaluation of DMUs are done by fuzzy data envelopment analysis (FDEA). Therefore, we evaluate DMUs from the perspective of the best and worst possible relative efficiency. For each DMU two efficiencies are calculated while inputs and ...
full textA new approach to rank the decision making units in presence of infeasibility in intuitionistic fuzzy environment
Data envelopment analysis (DEA) is a linear programming based methodology to determine the relative performance efficiencies of homogeneous decision making units (DMUs). In real world applications, some input and output datas do not possess crisp/fuzzy essence but they possess intuitionistic fuzzy (IF) essence. So, in this study, we develop an IF BCC (IFBCC) and an IF super efficiency BCC (IFSE...
full textA Layer DEA Model for Measuring and Improving the Efficiency in the Presence of Special Decision Making Units
In the evaluation of non-efficient units by Data Envelopment Analysis (DEA) referenced Decision Making Units (DMU’s) have an important role. Unfortunately DMU’s with extra ordinary output can lead to a monopoly in a reference set, the fact called abnormality due to the outliers' data. In this paper, we introduce a DEA model for evaluating DMU’s under this circumstance. The layer model can resul...
full textMy Resources
Journal title
volume 9 issue 20
pages 75- 90
publication date 2016-09-25
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023